
Computers & Graphics (2019)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

LifeBrush: painting, simulating, and visualizing dense biomolecular environments

Timothy Davison∗, Faramarz Samavati∗∗, Christian Jacob

ICT 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

A R T I C L E I N F O

Article history:
Received May 12, 2019

Keywords: Agent-based simulation,
Discrete element texture synthesis,
Sketch-based modelling, Virtual Reality,
Visualization

A B S T R A C T

LifeBrush is a Cyberworld for painting dynamic molecular illustrations in virtual reality
(VR) that then come to life as interactive simulations. We designed our system for
the biological mesoscale, a spatial scale where molecules inside cells interact to form
larger structures and execute the functions of cellular life. We bring our immersive
illustrations to life in VR using agent-based modelling and simulation. Our sketch-
based brushes use discrete element texture synthesis to generate molecular-agents along
the brush path derived from examples in a palette. In this article we add a new tool to
sculpt the geometry of the environment and the molecules. We also introduce a new
history based visualization that enables the user to interactively explore and distil, from
the busy and chaotic mesoscale environment, the interactions between molecules that
drive cellular processes. We demonstrate our system with a mitochondrion example.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

Biological systems span from whole organisms, down to the2

scale of viruses and individual molecules. At the mesoscale,3

molecules interact to form more complicated structure and4

function. The mesoscale mitochondrion is an internal com-5

partment within the Eukaryotic cell that assembles adenosine-6

triphosphate (ATP) molecules, which are used by other cell7

components to do work (Figure 1). The mitochondrion is a8

dense and chaotic space, yet highly organised [1, 2]. A sig-9

nificant challenge for researchers has been communicating sci-10

entific findings at this level because visible light microscopes11

do not reveal the functional components at this scale.12

Scientific illustrators have confronted the challenges posed13

by the mesoscale. For instance, David Goodsell [2] is fa-14

mous for his painstakingly detailed 2D watercolour paintings15

of mesoscale environments—his illustration of the mitochon-16

drion is the inspiration for Figure 1. Meanwhile, animating17

∗Corresponding author: email: tbdaviso@ucalgary.ca
∗∗email: samavati@ucalgary.ca

email: cjacob@ucalgary.ca

mesoscale scenes was a laborious process for a team of 3D ani- 18

mators in Harvard’s Biovisions project [3]. Imagine if we could 19

paint these illustrations in 3D space and then have them come 20

to life around us, to explore and manipulate. 21

The dense and chaotic mesoscale environments of the cell 22

pose some significant challenges: (1) how to fill and simulate 23

an environment with a large number of molecules and (2) how 24

to visualise the chaotic interactions between molecules. Man- 25

ual and random placement, together with agent-based simula- 26

tion in a video game engine, was employed for Prokaryotic and 27

Eukaryotic simulations [4, 5]. Klein et al. [6] use the power of 28

the GPU to create large and densely packed mesoscale environ- 29

ments through parameterisation automatically. 30

Inspired by Goodsell’s 2D illustration work, we created 31

LifeBrush [7] as a sketch-based Cyberworld to paint 3D 32

mesoscale illustrations in virtual reality (VR) that one can step 33

inside as they come to life (Figure 2). We propose novel visu- 34

alisations to trace interactions between molecules as the simu- 35

lation progresses through time. Our system couples interactive 36

sketch-based design with an agent-based model of molecular 37

interactions. 38

Agent-based modelling has been used to capture the swarm- 39

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review / Computers & Graphics (2019)

ing behaviour of birds [8] and for modelling molecules in bi-1

ological simulations [4, 5]. We use agent-based modelling to2

abstract the behaviour and interaction of molecules from the3

underlying and expensive to compute quantum dynamics that4

govern those interactions, which is essential for a real-time VR5

environment. A molecular-agent in our system has a set of be-6

haviours and attributes that determines how it interacts with its7

environment and other agents. We implemented an agent-based8

framework that is capable of simulating and rendering 10,0009

agents at 90 frames-per-second in our mitochondrion example10

(Section 3).11

The user creates example arrangements and configurations of12

agents in a palette (Figure 2). We paint molecules, derived from13

the arrangements in the palette, along the brush-path, in space,14

and on surfaces (Section 5). To generate the molecules, we use a15

discrete element texture synthesis algorithm, that we previously16

described in [9], that uses the palette as an example for synthe-17

sis. We propose a simple mapping to convert between our sys-18

tem’s representation of an agent and the internal representation19

of a so-called element within the texture synthesis framework20

(Section 4). Switching back and forth between painting and21

simulating enables iterative design possibilities (Figure 3).22

In this extended article on LifeBrush [7] we added a sculpting23

tool, based on implicit surface modelling [10]. It enables the24

user to quickly sketch the geometry of the environment and the25

rough shape of proteins (Figures 13 and 11). The sculpting tool26

acts like virtual clay; the user either adds or removes the virtual27

clay with the brush point (Section 6).28

In our original LifeBrush mitochondrion [7], it was difficult29

to observe and understand when and how molecular-agents in-30

teract. In this extended article, we propose a novel historical31

visualisation of events within the VR environment, where the32

user queries a set of agents and interactions to see a trace of the33

spatial history and sequence of events that led to the interactions34

(Section 7).35

The complete source code and examples used in this arti-36

cle are available under an MIT open source license (https:37

//github.com/timdecode/LifeBrush). A video based on38

the figures in this article is available at https://youtu.be/39

i0WU_LiCxKI.40

2. Related work41

2.1. Molecular Dynamics Construction and Visualization42

There are many different techniques for producing 3D visual-43

izations of molecular and mesoscale structures [11, 12]. To44

create molecular scenes, Packmol [13] and CellPack [14] ran-45

domly pack proteins and molecules onto surfaces and regions46

inside of a virtual cell according to user-created recipe files.47

Klein et al. [6] accelerate the packing process with GPUs. Koch48

et al. [15] reduce visual clutter arising from ambient occlusion49

artefacts in 3D multi-scale visualizations of molecular scenes,50

while Kouřil et al. [16] address the problem of label placement51

in dense 3D molecular scenes. CellView [17] is an interac-52

tive visualization tool for exploring multi-scale visualizations of53

structures in the cell down to the molecular level. In LifeBrush54

Eukaryotic Cell Mitochondrion

Cristae

Cristae
Fig. b

Fig. c

Proton

ADP path

Matrix space Matrix space

ATP

ATP synthase

Proton pump

Proton

(a) (c)

(b)

Fig. 1: The mitochondrion is an organelle in Eukaryotic cells. It generates most
of the cell’s adenosine triphosphate (ATP), a source of chemical energy. A
proton gradient between the matrix space and cristae drives protons (in red)
through ATP synthase (in green) enzymes in the inner mitochondrial mem-
brane, causing the enzymes to spin. ATP synthase uses its kinetic energy to
combine phosphate and adenosine diphosphate (ADP, in cyan) to produce ATP
(green spheres). Hydrogen pumping proteins (in green) in the inner membrane
move hydrogen from the matrix space to the cristae. To increase the number of
ATP synthase enzymes the mitochondrion is packed with cristae, increasing its
internal surface area and the rate of ATP synthesis. We sketched and simulated
this mitochondrion, which contains 10,000 molecules, in VR using LifeBrush.

[7], we introduced interactive sketch-based design and simu- 55

lation for molecular scenes, within VR. This article addresses 56

limitations of that work, with new visualization and 3D sculpt- 57

ing tools. 58

2.2. Agent-based modeling and visualization 59

Agent-based approaches have been used to model biological 60

systems like swarming insects and birds [8], without relying on 61

purely mathematical models [18]. Agent-based systems have 62

also been used to model the Lactose operon inside E. coli bac- 63

teria [19], for gene regulation [20] and immune system models 64

[21]. Along the lines of mathematical whole-cell models [22], 65

agent-based models have been applied to both Prokaryotic [4] 66

and Eukaryotic cells [5]. Meanwhile, multi-scale agent-based 67

models can simultaneously capture cells and groups of cells 68

at different scales [23, 24]. Automatic abstraction has been 69

used to reduce the computational complexity of such models 70

[25]. Pathline visualizations have been applied to swarm sys- 71

tems [26, 27]. We follow a similar idea for path visualization, 72

but with the addition that the user can query events and agents 73

from a historical simulation timeline in VR. We have also added 74

a novel trace component to the visualization to trace dependen- 75

cies between interactions. 76

https://github.com/timdecode/LifeBrush
https://github.com/timdecode/LifeBrush
https://github.com/timdecode/LifeBrush
https://youtu.be/i0WU_LiCxKI
https://youtu.be/i0WU_LiCxKI
https://youtu.be/i0WU_LiCxKI

Preprint Submitted for review / Computers & Graphics (2019) 3

new agent
arrangement

painting agents in
the example palette

selection

(a)

brush path

painting a 3D
agent-based simulation

(b)

immersive and interactive
agent-based simulation

spinning
behaviour

pumping
behaviour

(c)

Fig. 2: Immersive design and simulation in VR. (a) Creating and configuring a new arrangement of molecular-agents (white outline) through a copy-paste operation
from another set of molecular-agents (orange outline). (b) Painting the red agents from (a) into an agent-based simulation. (c) Stepping into an immersive
simulation, the painted molecular-agents come to life. In the close-ups, molecules in the mitochondrion spin and pump red proton agents along the orange arrow.

2.3. Example-based texture synthesis, procedural modelling,1

and sketch-based synthesis2

The goal of example-based texture synthesis algorithms is to3

create a large non-repeating output that is similar to an input4

texture [28]. Pixel-based approaches synthesize 2D textures5

[29, 30, 31, 32, 33, 34]. Multi-scale 2D texture synthesis allows6

textures with very high [35] or infinite resolution [36]. Dis-7

crete element textures manipulate individual discrete elements8

instead of pixels. For example, texture bombing splatters small9

texture elements into a larger texture [37] and more recently this10

has been optimized for on-the-fly generation on GPUs [38, 39].11

Hurtut et al. [40] and Landes et al. [41] consider the shape of12

elements during synthesis. In this article, we use our interactive13

discrete element texture synthesis algorithm, with support for14

multiple textures in a palette, to generate agents [9]. This algo-15

rithm is related to the works of Ma et al. [42], Ijiri et al. [43]16

and Roveri et al. [44]. We use a simple mapping from agents17

to elements (Section 5), and as far as the authors are aware,18

our original work [7] is the first to apply example-based dis-19

crete element texture synthesis to the problem of generating an20

agent-based simulation.21

Sketch-based interfaces apply the familiarity of real-world tools22

like pencil and paper to interactive design problems, such23

as 3D modelling [45]. Ecosystem simulation has been used24

to synthesize and render large plant ecosystems [46]. Dis-25

crete element texture synthesis has been combined with sketch-26

based synthesis to allow the user to guide the synthesis pro-27

cess [43, 47, 48, 44, 9]. Ketabchi et al. [49] and Samavati28

and Runions [50] apply interactive 3D content modelling to the29

digital earth project. Sketch-based interfaces have also been30

used to design and guide dynamic fluid simulations [51] and31

for sketching crowds of agents [52]. A limitation of 2D sketch-32

based interfaces is how to embed a 2D curve from the computer33

screen into a 3D space. The advent of consumer VR devices34

solves some of the problems with 2D sketch-based synthesis,35

by adding six degree-of-freedom input. For example, sketch-36

based interaction has been used in VR to paint curves in virtual37

space [53]. We build on discrete element synthesis and sketch- 38

based interaction for creating and configuring molecular-agents 39

in a 3D VR simulation. 40

paint agents

paint agents

simulate

simulate

play

play

pause
repeat

paint agents in
space and on
surfaces from the
example palette

Fig. 3: An interactive exploration loop. We paint a simulation, press play and
simulate. We pause, paint new agents and repeat. The example palette enables
us to create new agent arrangements and configurations to paint into our simu-
lations.

3. Large-scale agent-based simulation in Unreal Engine 4 41

An agent is defined by the set of situations that the agents can 42

be in, its actions, its internal data and a decision function that 43

determines what actions to take, given internal data and the cur- 44

rent situation [54]. An agent interacts with other agents and its 45

environment. 46

Our agent-based framework is built on the well known entity- 47

component-system architecture [55], which we implemented 48

within LifeBrush. In this architecture, we store the state of an 49

4 Preprint Submitted for review / Computers & Graphics (2019)

agent in components attached to the agent entity. Systems im-1

plement agent behaviour by accessing and modifying the com-2

ponents attached to an agent. We integrated our implementation3

with the Unreal Editor so that users can utilize Unreal’s 3D wid-4

gets, property editor interface, and serialization system [56].5

For performance reasons, we chose to implement an entity-6

component-system (ECS) instead of using Unreal’s actor-7

component model. The Unreal Engine is generalizable to a8

wide variety of games. However, that generalizability meant9

that we were not able to simulate more than a few hundred10

molecular-agents in real-time. Consequently, we carefully op-11

timized our ECS implementation to store structures of the same12

type in contiguous blocks of memory. Systems enumerate the13

components of a given type, one after the other, enabling the14

processor to keep data in its fast CPU-caches without access-15

ing its slow main memory. Efficient cache utilization and small16

size structures are the primary reason that we can achieve higher17

performance than the actor-component model that Unreal uses18

natively. The Unity game engine has recently released a sim-19

ilar entity-component-system architecture to our implementa-20

tion and likewise, simulate a significant number of agents [57].21

To render so many agents, we apply GPU instancing, an22

efficient technique that uses hardware features to reduce the23

number of draw calls necessary to render many objects with24

the same geometry and material properties. With so many25

agents, running rigid body physics calculations on the CPU26

is too expensive for a real-time simulation. Therefore, we in-27

tegrated Nvidia’s Flex GPU particle-physics engine with our28

entity-component-system [58, 59].29

3.1. Mitochondrial molecular-agents30

Swarm agents implement rules that determine how they behave31

when other agents fall within zones of interaction [8]. Follow-32

ing this model of swarm behaviour, we use interaction zone33

rules to govern the behaviour of our molecular agents (see Fig-34

ure 4). We store the state of the agent behaviours in compo-35

nents, with the implementation of the rules defined in systems.36

Each agent has a Flex particle that determines its physical inter-37

action with other agents and the environment [58]. Except for38

the molecular-agents on the mitochondrial surfaces, each agent39

also has random walk behaviour to model Brownian motion.40

'
Hydrogen ATPADP

Interaction cone

ATP synthase motor ATP synthesis Proton pump Random walk

(a) (b) (c) (d)

Fig. 4: Molecular-agent behaviours. (a) The ATP synthase motor behaviour
causes ATP synthase to spin when a hydrogen agent enters its interaction cone.
(b) ADP is converted into ATP by a spinning ATP synthase. (c) Protons are
pumped from within the interaction cone of a proton pump to the other side of
the membrane. (d) The random walk behaviour causes an agent to randomly
change direction at random time intervals, simulating Brownian motion.

4. Synthesizing molecular-agents 41

4.1. Discrete element texture synthesis 42

LifeBrush uses a discrete element texture synthesis algorithm 43

that we developed previously (see [9]) to generate molecular- 44

agents. Agents are not elements in that system. A discrete 45

element is a particle with a position, radius and an attribute 46

vector to store user-defined attributes of the element. We use 47

a map to convert back and forth between agents and elements 48

(Figure 6). 49

A discrete element texture has the property that the arrangement 50

of elements is locally similar in a small window to other regions 51

of the texture [28]. Our algorithm generates agents so that the 52

windows around those elements are similar to windows in the 53

example [9]. The algorithm requires a measure for how similar 54

the attribute vectors of two elements are. 55

In LifeBrush, the attribute vector consists of two components, 56

an appearance identifier and a behaviour identifier. The vector 57

components are set during the mapping from agent to element. 58

The appearance identifier is a unique integer for the combina- 59

tion of mesh and material properties of an agent. If two agents 60

have the same mesh and material, they will have the same ap- 61

pearance identifier. The behaviour identifier is also an integer 62

for the unique combination of components attached to an agent. 63

If two agents have the same set of components, they will have 64

the same behaviour identifier. 65

Let a and b be elements, with attribute vectors [αa, βa] and 66

[αb, βb] respectively, where αa is the appearance identifier for 67

a and βa is its behaviour identifier. The similarity measure be- 68

tween a and b is given by: 69

|a − b| = ω0(αa, αb) + ω1(βa, βb), (1)

where ω0 and ω1 are customizable functions to compare two 70

attributes. In our implementation, ω0 and ω1 are 0 when their 71

parameters are the same and 1 when not. Our discrete element 72

texture synthesis algorithm uses the element similarity mea- 73

sure to match elements that are the same (by appearance and 74

behaviour) in the output and example [9]. With two attribute 75

components, it is possible to synthesize two agents that look 76

the same, but have different behaviours—we exploit this abil- 77

ity to paint new behaviour onto previously synthesized agents 78

(Figure 10b). 79

4.2. Synthesizing agents 80

We paint with elements and we simulate with agents. When 81

we switch between painting and simulating, we map elements 82

to agents, and vice versa (Figure 5). An element in LifeBrush 83

contains an additional data area. To map an agent to an ele- 84

ment, we copy the agent (with its components) into the addi- 85

tional data area. Then, we set the appearance identifier and the 86

behaviour identifier of the element’s attribute vector. Now rep- 87

resented as elements, the element synthesis framework can use 88

the neighbourhood similarity function (Equation 1) to generate 89

new elements along the brush-path. Figure 6 contains an exam- 90

ple mapping for our ATP Synthase agent. 91

Our element-synthesis framework (see Davison et al. [9]) is a 92

separate plugin to LifeBrush. Its representation of an element is 93

Preprint Submitted for review / Computers & Graphics (2019) 5

map

Agent

components

position
elements

brush
path

elements

painting simulation

agents

agents

mapElement

attribute vector

additional
data

appearance id mesh and
material

behaviour id

position

...

Fig. 5: Our generative tools synthesize elements. When we simulate we map
elements into agents. When we paint again, we map the agents back into ele-
ments. The additional data area of the element stores the agent state and config-
uration. The position maps to the element position. Each unique combination
of agent appearance and behaviour gets a unique integer identifier. We store
the appearance identifier and the behaviour identifier in the element attribute
vector, which we use to compare the similarity of two elements during element
synthesis.

compact, efficient and separate from an agent. In future work,1

we would like to include other element synthesis algorithms2

with their internal representations. Mapping allows us, and pos-3

sibly other users of LifeBrush, to keep the representation of el-4

ements separate from our representation of an agent.5

Element
position

attribute vector:
 appearance id: 23
 behaviour id: 42

additional data:
 mesh and material
 ATP synthesis
 rigid body particle

ATP Synthase Agent

position

components:
 mesh and material
 ATP synthesis
 rigid body particle

to id

copy

copy

to id

Fig. 6: Mapping an ATP Synthase Agent to an Element. An ATP Synthase
Agent has a component for ATP synthesis behaviour, a component for rigid-
body interaction through the Nvidia Flex particle physics engine [58, 59], a
mesh component with associated material, and a static position component to
keep it anchored to the membrane surface. The unique combination of these
component classes gets an identifier (for example, 42), which we map to the
behaviour identifier of the Element. The mesh and material properties get an-
other unique identifier (for example, 23) that maps to the appearance component
of the Element. We copy components to the Element additional data area. Map-
ping the Element to an Agent copies the additional data area component back
to the Agent.

5. Sketch-based simulation design in virtual reality6

Inspired by physical pencil-and-paper interactions, sketch-7

based interfaces are used extensively for 3D modelling [45].8

A challenge with 2D sketch-based interfaces is how to embed9

what is fundamentally a 2D curve created by a 2D input device10

(mouse and keyboard or a digital pen) into a 3D environment.11

Recent commodity hand-held VR controllers are 3D input de-12

vices, tracking position and orientation, that let the user sketch13

curves directly in 3D space (see Google’s Tilt Brush [53]).14

(a)

generation brush
radius

} top click
} bottom click

(b)
right hand

selection sphere

generation brush
radius

(c)

Fig. 7: VR controller operation. (a) The user switches between different tools
and settings by pointing their controller at a menu in VR. The size of the gen-
eration brush (b) and selection brush (c) is controlled by the analogue trigger
button on the VR controller. (b) Clicking the top or bottom of the trackpad
toggles different tool modes.

In LifeBrush, VR hand-held controllers are used for sketch- 15

based interactions, navigation gestures and for interacting with 16

a VR menu system (Figure 7). Through VR controllers the user 17

interacts with the VR menu, to switch between different tools 18

and to enter or leave the simulation mode. 19

We support room-scale VR navigation (Figure 2) and navi- 20

gation gestures. Like an astronaut pulling his/her way through 21

a space station, the grab gesture can be used to pull oneself 22

through the world. 23

The generative-brush path B is composed of a set of spheres 24

which have a position and a radius (bpi, bri) (Figure 9a). As 25

the user sketches with the brush, the VR controller’s analogue 26

trigger button is used to set the radius of the brush spheres. 27

The generative-brush synthesizes new elements within the set 28

of brush spheres B. However, when it passes over previously 29

synthesized elements, the position of those elements and the 30

attribute vector are updated to reflect the example palette selec- 31

tion. Elements outside of the brush path are not affected. There 32

are useful applications for this; for example, we use the gener- 33

ative brush to add ATP synthase behaviour to agents in a scene 34

that did not have this behaviour before (Figure 10c). 35

With the filler tool, (Figure 9b) the user identifies a fill point 36

where there are no elements, then we synthesize elements from 37

that point until there is no more room to do so. The eraser 38

(Figure 9c) removes elements within a certain distance along 39

a brush path. The selection brush selects agents in a radius 40

around the brush. 41

5.1. Assembling agents and desinging examples in the palette 42

The example palette is a space where the user designs arrange- 43

ments of agents and configures their behaviour and other prop- 44

erties (Figure 2). To sketch agents into the simulation, we select 45

agents from the palette, and an example-based synthesis algo- 46

rithm uses the example to create agents along the brush path. 47

See Davison et al. [9] for a more detailed description of this 48

algorithm. 49

To create new example arrangements, or to modify existing 50

arrangements, the user grabs agents with a VR controller to 51

move the agents around. We similarly duplicate agents. To 52

create a new agent, the user drags a mesh from the mesh li- 53

brary into the palette (Figure 8). The meshes are created with 54

6 Preprint Submitted for review / Computers & Graphics (2019)

our sculpting tool (Section 6) or in an external 3D modelling1

program like Maya [60]. We configure the newly created agent2

with a property editor interface in VR. To add behaviours to3

the agent, the user selects the behaviour from a behaviour com-4

ponent class library using a drop-down list. Some parameters,5

such as numbers, can be difficult to modify with the VR inter-6

face, in which case the user can fall back to Unreal Engine’s 2D7

mouse and keyboard interface. To move an agent, the user grabs8

it with a VR controller (by pulling the analogue trigger), to re-9

size they pull it apart with two hands. Another button allows10

the user to duplicate an agent.11

Selected agent

Mesh library

Behaviour component
class library

Agent property editor
Choosing and attaching
an ATP Synthase
behaviour component

Fig. 8: Editing agent behaviour. In this screenshot, we just created an ATP
synthase agent by dragging it from the mesh library to the right. We select an
ATP Synthase behaviour from a library of behaviour component classes to give
it that behaviour. We configure the properties of the agent, including the newly
added ATP synthase component in a property editor.

5.2. An example LifeBrush session12

In Figure 10 we describe an example iterative design ses-13

sion using LifeBrush. The session illustrates how a user can use14

LifeBrush to experiment with a simulation, using our sketch-15

based painting tools.16

6. Implicit surface modeling in VR17

The sculpting tool allows the user to create the 3D geometry18

for molecular agents (Figure 11) and the simulation geometry19

(Figure 13). As the user paints, the sculpting tool modifies a 3D20

scalar field of density values, from which a surface reconstruc-21

tion algorithm (Lorensen and Cline [10]) converts the scalar22

field into a 3D mesh. The user controls the size of the sculpting23

brush with an analogue trigger button. Thus, it is possible to24

create both fine and coarse meshes with the tool.25

The scalar field is arbitrarily large. To efficiently construct a26

3D mesh from the field in real-time we break the field down into27

chunks (Figure 12). Then, for each recently modified chunk, we28

efficiently construct a small mesh using marching cubes [10].29

The field is broken down into a sparse collection of chunks. If30

there are no non-zero values in a chunk, it does not consume31

memory. A chunk is a small grid of density values—for ex-32

ample, a 323 grid of scalar values. The chunks are so small,33

brush-stroke

synthesize along path

(a) Generative-Brush New molecular-agents are synthesize along the brush
path within the set of brush points B.

fill-point

(b) Filler Tool We fill the empty region from the fill-point until there is no more
space to add new molecular-agents.

brush-stroke

(c) Eraser Removing elements along the brush stroke (orange dashed-line).

Fig. 9: Our sketch-based tools applied to a planar surface.

that we can construct the chunk meshes in real-time on a 5960x 34

Intel processor running at 3.0 GHz. Before the user paints ele- 35

ments on the mesh, we merge the small chunk meshes into one 36

mesh. We also have an option to trim the mesh to the simulation 37

bounds (Figure 13). 38

The sculpting tool supports two modes, addition or subtrac- 39

tion. We increment the scalar value of cells overlapping the 40

brush point over time. Cells closer to the brush point increase 41

in value faster. Let si be the scalar value at position pi ∈ R
3

42

and let pt be the position of the sculpting tool point and rt be 43

the current radius of the tool controlled by the trigger. At each 44

tick of the Unreal Engine [56] the updated value of the scalar 45

field at pi is s′i = si + δt ∗ (1 − |pt − pi|2/rt). If pi is further 46

than rt from pt we do not update the value of the scalar field 47

si. This tool is good for creating smooth rounded objects. With 48

two controllers, it is possible to use this same technique to paint 49

with capsules instead of spheres. In this mode, instead of mea- 50

suring the distance of a cell from the brush point, we measure 51

the distance of the cell from the line segment between the two 52

controllers and update the scalar field accordingly. In the future, 53

Preprint Submitted for review / Computers & Graphics (2019) 7

sketch

exampe palette

simulate

brush path

random-walks
(a) Here we are sketching the initial state of a mitochondrion simulation. We
painted the agents in this simulation from the example palette. At this point,
the agents only have a random-walk behaviour and the simulation models an
inactive mitochondrion.

exampe palette

add ATP synthase
behavior

add ADP agents

sketch simulate

brush paths

no proton gradient

no ATP synthesis
(b) ATP synthase combines phosphate molecules with adenosine diphosphate
(ADP) to create adenosine triphosphate molecules (ATP). We add this be-
haviour to the ATP synthase agents in the palette (using the editor in Figure
8). We brush over the old ATP synthase agents in the simulation to add the new
ATP synthase behaviour from the example. We also paint ADP into the simu-
lation. When we simulate, ADP binds to ATP synthase. However, we need a
proton gradient to drive ATP synthase to produce ATP.

add proton agents

exampe palette

sketch simulate

brush path

proton gradient

ATP synthesis

spin

(c) Here we add proton agents (that represent a large number of protons) to the
example palette and paint protons into the cristae (the central region). When
there are more protons on the cristae side of the membrane relative to the other,
this creates a charge gradient that drives protons through ATP synthase, causing
it to spin and produce ATP.

add proton agents

exampe palette

sketch simulate

brush path

proton gradient

ATP synthesis

spin

(d) Eventually, the proton gradient equalizes, and ATP synthase stops producing
ATP. In this step, we add a proton pump behaviour to some of the agents in the
example palette and paint that new behaviour onto the proton pumps in our
simulation. We simulate and observe the restoration of the proton gradient.
Eventually, ATP synthase starts spinning again and produces ATP.

Fig. 10: A design session where we used LifeBrush to paint and explore a mitochondrion simulation (video: https://youtu.be/HYLvN2qijeA).

we would like to add other tools for flattening the implicit sur-1

faces and creating sharp geometries. We chose marching cubes2

[10] due to the simplicity of the implementation, an alternative3

and more sophisticated technique is dual-contouring [61].4

We use the sculpting tool to create geometry in the environ-5

ment, hence the user does not have to break immersion to use6

a third party modelling tool like Maya [60] or Blender [62]. It7

is also possible to use geometry imported from 3D modelling8

tools at the same time. In Figure 13 we use the sculpting tool9

to increase the internal surface area of our mitochondrion and10

hence the rate of ATP synthesis.11

We integrated the sculpting tool with our discrete element12

texture synthesis system [9]. We identify the disconnected is-13

lands in the sculpted mesh and break the mesh into sections.14

In our discrete element framework, we calculate an orientation15

field for each section using Crane et al.’s [63] fast algorithm. 16

The agent-building tool (Section 5.1) contains a library of 17

previously sculpted meshes and imported 3D meshes from ex- 18

ternal 3D modelling programs. We generated some of the 19

agent-meshes from x-ray crystallography data available from 20

the protein data bank [64]. Creating meshes from the protein 21

data bank takes time, in tools like Maya. Furthermore, the pro- 22

tein databank is incomplete. Therefore, we found the sculpting 23

tool useful for quickly sketching protein meshes, which we may 24

later replace with true-to-life versions. Figure 14 contains some 25

example proteins that we sketched based on 2D illustrations by 26

David Goodsell [2]. 27

https://youtu.be/HYLvN2qijeA

8 Preprint Submitted for review / Computers & Graphics (2019)

Sculpting tool

Brush path

Fig. 11: Sketching the surface of an ATP synthase molecule using our sketch-
based sculpting tool in VR. (left) New material is added along the brush path.
(right) The complete ATP synthase mesh.

scalar field updated chunks

brush area

(a) Scalar field (b) Chunked mesh (c) Merged mesh

Fig. 12: (a) The scalar field is broken down into small chunks, typically with di-
mension 323. When the brush modifies any value in a chunk, we mark the chunk
as dirty. (b) We construct a new mesh for each dirty chunk using marching-
cubes [10]. (c) Finally, we merge the meshes when the user stops using the
sculpting tool.

7. Iteractive visualization with simulation timelines1

In the original LifeBrush system it was challenging to ob-2

serve interactions between molecular-agents in the dense and3

busy mitochondrion environment [7]. Our proposed solution4

to this problem is a history based visualization that highlights5

molecular-agent interactions.6

The timeline data structure is a historical record of interac-7

tion events and the state of the simulation at different points8

in time. Whenever an agent triggers an interaction event, such9

as an ATP-Synthase molecule creating an ATP molecule, we10

record the event in the timeline. The event stores the time of11

the interaction, the agent that triggered the interaction and the12

other interacting agents. The timeline also records the position13

of the agents every k seconds (the default value for k is 0.25s).14

We have developed two interactive visualizations. Agent path-15

lines show the path agents have taken through the simulation.16

An event trace visualizes a sequence of interactions between a17

set of agents.18

7.1. Agent pathlines19

Pathlines in scientific visualization have been used to trace20

the flow of virtual particles seeded from a starting position21

through an unsteady vector field [65]. We visualize the paths22

of molecular-agents as they course their way through the simu-23

lation (Figure 15). An underlying vector field does not drive the24

agent trajectory. Instead, the trajectory of the agents is implicit25

to the interactions between the agents.26

Mesh created in Maya

Capsule brush

Sculpted mesh

(a) (b)

Fig. 13: Sculpting the mitochondrial environment. (a) We use the capsule brush
to sculpt new cristae regions between the two controllers. The scene also con-
tains a mesh that we designed in Maya. (b) We trim the sculpted meshes to the
simulation bounds and paint lipids and molecular-agents into the scene. The
mitochondrion now has more internal surface area for ATP synthesis than in
Figure 2c.

ATP SynthaseProton pumpCristae widgetCristae widget

Fig. 14: Sculpted molecular agents. These are some molecules that we created
with our sculpting tool. The purple proteins are widgets whose function is to
fill the visual space of the mitochondrion (we only simulate their rigid body
interaction with other molecules). The green proteins are a proton pump and an
ATP synthase.

Agent pathlines twist and weave their way through the simu- 27

lation space where other molecular-agents occlude them from 28

view. To solve this problem, we hide occluding molecular- 29

agents that lie between the user’s eyes and the pathlines. We do 30

this efficiently in real-time by raycasting, from the eye position 31

in the direction of each agent in the scene, against a bounding- 32

volume-hierarchy of the pathline visualization [66]. We de- 33

saturate the appearance of the molecular-agents that were not 34

queried by the user, to make the pathlines easier to see in VR. 35

The user interacts with the pathline visualization by querying 36

a set of molecular-agents with a selection brush. In Figure 15 37

we query the simulation after it has run for a few seconds. The 38

pathline visualization reveals some interesting observations: 1) 39

the central region was under pressure, that pushed the hydrogen 40

agents (traces in red) to a region of lower pressure (the top in 41

Figure 15b), and 2) there was a bias in the physics simulation 42

that pushed agents from the left towards the top, instead of uni- 43

formly from either side of the central region. We are unsure 44

where this bias comes from, but perhaps it is a property of the 45

physics library we are using [58]. 46

We found that the visualization tool had unexpected utility 47

for debugging. For example, we did not notice when we were 48

building our simulations, that some molecular-agents were tun- 49

nelling through the collision geometry, into regions they did 50

Preprint Submitted for review / Computers & Graphics (2019) 9

(a)

Query

(b)

Query

(c)

Fig. 15: Pathlines reveal the course taken by molecular agents in a simulation. (a) The initial state of a mitochondrial simulation, with hydrogen agents concentrated
in the central region. After a few seconds we paused the simulation. (b) Querying the agents at the top (white dotted line), we see that the hydrogen agents moved
from the central region to the top. There is a notable bias of left originating hydrogen agents. (c) With nowhere to go, the molecular-agents at the bottom followed a
wandering path.

ADP tunnelling through mesh

ADP

Start of ADP path

Fig. 16: Debugging with pathlines. We did not configure ADP to tunnel through
the collision geometry like it is in this pathline visualization. We fixed the issue
by modifying the collision parameters for the mesh.

not belong (Figure 16). We corrected the problem by modify-1

ing particle-surface collision properties. In another simulation,2

we observed molecular-agents teleporting across the simulation3

(Figure 17). The teleportation was due to a bug in the ATP syn-4

thase agent behaviour.5

7.2. Interaction event traces6

When an event occurs, we place a 3D glyph (a coloured cube)7

at the location of the event. The user interacts with the event8

trace visualization by selecting event glyphs with a VR con-9

troller.10

For each selected event glyph, we trace forwards and back-11

wards in the timeline from when the event occurred, looking12

for other events that reference the agents affected by the event.13

We do this recursively, up to a certain depth, and collate those14

events. Then we visualize the location of each collated event15

and produce a pathline visualization for the involved agents.16

Start of Hydrogen teleportation

End of Hydrogen teleportation

Fig. 17: Debugging with event traces. While visualizing proton pump be-
haviour, we noticed that hydrogen was teleporting across the simulation at ran-
dom intervals. This visualization helped us notice and track down the bug in
our code.

In Figure 18, we query an ATP synthesis event. The event 17

trace visualization tells a story, where a hydrogen agent (red 18

pathline) was driven through the ATP synthase molecule, giv- 19

ing it the energy to convert an ADP molecule into ATP, later 20

that hydrogen agent was pumped back into the cristae (the cen- 21

tral region of Figure 18a). Querying multiple events reveals the 22

network of molecular-agent interactions in our mitochondrion 23

(Figure 18c). 24

Event traces take a 4D dataset (spatiotemporal positions) and 25

present it as a pathline. With the simulation paused, the user can 26

take their time and explore a series of molecular interactions. 27

As we mentioned, event traces tell the store of ATP synthesis 28

and we think the visualization could have applications for ex- 29

plaining other molecular processes in mesoscale environments. 30

3D animations like Harvard’s Biovisions project [3], use 31

scripted and carefully animated video sequences to tell a story. 32

Telling such a story with a simulation can be challenging, be- 33

10 Preprint Submitted for review / Computers & Graphics (2019)

Select interaction events

Figure b

Figure c

Event glyphs (cubes)
 ATP synthesis
 ATP synthase spin
 Proton pumped

(a)

Hydrogen

ADP path

ATP

Proton pump

ATP Synthase

ATP synthesis event

ATP synthase spin event

Proton pump event

(b)

Hydrogen

ADP path

ATP

ATP Synthase
ATP synthesis event

Proton pump event

(c)

Fig. 18: Event trace visualizations reveal sequences of molecular-agent interactions. (a) The user selects event glyphs (the coloured cubes embedded in the
simulation) with a brush tool, in the regions indicated by the white dashed lines. (b) Zooming into the central region, a molecular story unfolds. Hydrogen, pushed
by a proton gradient, is driven through ATP synthase, giving it mechanical energy to convert ADP into ATP, which moves away. Meanwhile, the hydrogen agent
wanders into a proton pump and is pushed back into the central region to maintain a proton gradient. (c) Our event trace visualization reveals the network of
molecular-agent interactions over our mitochondrial membrane.

cause we may have to wait a long time for just the right se-1

quence of interactions, that fit the story, to occur. Le Muzic2

et al. [67] reduce the wait between events with a type of ran-3

dom interpolation. However, with pathlines, we can visualize4

the time between events, while also visualizing past and subse-5

quent interactions. Without editing the screenshots in an image6

editor (other than to add annotations), we were also able to use7

our visualization to explain mitochondrial function in several8

2D figures in this article (such as Figure 1).9

8. Discussion and future work10

In our original LifeBrush paper, we painted and brought to life11

a mesoscale illustration of the mitochondrion, in a VR Cy-12

berworld [7]. In this extended article, we describe additional13

tools for sculpting environmental and molecular-agent geome-14

try with VR. Our example mitochondrion simulation is dense15

and chaotic, replicating a real biomolecular system. Therefore16

we have also extended our system with pathline and event trace17

visualizations to understand that chaotic space.18

Event trace visualizations are a useful tool for explaining and19

exploring agent interactions. We also found them useful for de-20

bugging. In the future, we would like to add a replay option.21

With a replay option, a LifeBrush simulation could be used in22

educational settings for students to interactively explore and ex-23

periment with mesoscale systems.24

To generate and simulate the results in this article, we used25

an Intel 5960x processor with eight cores running at 3.0 GHz26

(the processor was released in 2014), 16 GB of RAM and an27

Nvidia GTX 1080 GPU. We used an HTC Vive VR headset28

and controllers. Our results run at 90 frames-per-second in VR29

with about 10,000 agents. In the future, we could improve per-30

formance by multithreading our simulations and using level-of-31

detail techniques to reduce GPU overhead.32

The target users for LifeBrush, include scientific illustrators, 33

modellers, and computer scientists building mesoscale illustra- 34

tions. We demonstrated an interactive sketch-based system; 35

however, creating even simple molecular-agents requires writ- 36

ing C++ code. For users who can program, this is still a signif- 37

icant and time-consuming limitation. In the future, we plan to 38

explore interactive and visual ways of defining molecular agent 39

interactions to augment the programming interface. One possi- 40

ble solution is to provide the system with example agent inter- 41

actions and then derive automatic rules for those interactions, 42

such as with prototypical situation-action-pairs [68]. 43

Our sculpting tool is limited to capsular or spherical brushes. 44

We want to add more brush types and functions. Another pos- 45

sibility is to add subdivision modelling tools. 46

In the future, we would also like to improve the accuracy 47

of our mitochondrion illustration, especially with more func- 48

tion and behaviour. It would also be necessary to validate it 49

against accepted models as well as biological in vivo experi- 50

ments. However, even with our naive implementation, we think 51

that it still has illustrative value. Future work will explore creat- 52

ing other mesoscale illustrations and simulations with our sys- 53

tem. 54

In theory, we can extend our agent-to-element mapping to 55

other agent-based systems and discrete element texture syn- 56

thesis algorithms. For example, LifeBrush could be useful for 57

painting crowd and ecosystem simulations. We would also like 58

to incorporate Roveri et al.’s [44] algorithm for repetitive struc- 59

ture synthesis, among others. 60

Previous systems use recipe files to automatically pack 61

molecules into mesoscale environments [13, 14, 6]. In contrast 62

to these systems, we let the user interactively paint molecular 63

agents into the mesoscale environment. We also demonstrated 64

immediately bringing that environment to life within the same 65

session. An exciting interaction is using our sketch-based tools 66

to experiment with the simulation (Section 5.2) interactively. 67

Preprint Submitted for review / Computers & Graphics (2019) 11

Finally, an exciting possibility is collaborative editing and1

playback with LifeBrush in a multiplayer environment and2

across non-VR devices (like tablets and desktop computers).3

We imagine applications of our method for interactive illustra-4

tion and teaching of mesoscale environments.5

References6

[1] Zick, M, Rabl, R, Reichert, AS. Cristae formationlinking ultrastructure7

and function of mitochondria. Biochimica et Biophysica Acta (BBA)-8

Molecular Cell Research 2009;1793(1):5–19.9

[2] Goodsell, DS. The machinery of life. Springer Science & Business10

Media; 2009.11

[3] Harvard BioVisions, . The inner life of the cell (video). 2007. URL:12

http://biovisions.mcb.harvard.edu.13

[4] Esmaeili, A, Davison, T, Wu, A, Alcantara, J, Jacob, C. Prokaryo: an14

illustrative and interactive computational model of the lactose operon in15

the bacterium escherichia coli. BMC bioinformatics 2015;16(1):311.16

[5] Yuen, D, Jacob, C. Eukaryo: An agent-based, interactive simulation of17

a eukaryotic cell. In: Artificial Life Conference 2016. 2016, p. 562.18

[6] Klein, T, Autin, L, Kozlı́ková, B, Goodsell, DS, Olson, A, Gröller,19

ME, et al. Instant construction and visualization of crowded biological20

environments. IEEE transactions on visualization and computer graphics21

2018;24(1):862–872.22

[7] Davison, T, Samavati, F, Jacob, C. Lifebrush: Painting interactive agent-23

based simulations. In: 2018 International Conference on Cyberworlds24

(CW). 2018,.25

[8] Reynolds, CW. Flocks, herds and schools: A distributed behavioral26

model. In: ACM SIGGRAPH computer graphics; vol. 21. ACM; 1987, p.27

25–34.28

[9] Davison, T, Samavati, F, Jacob, C. Interactive example-29

palettes for discrete element texture synthesis. Computers & Graphics30

2018;URL: http://www.sciencedirect.com/science/article/31

pii/S0097849318301778. doi:https://doi.org/10.1016/j.cag.32

2018.10.016.33

[10] Lorensen, WE, Cline, HE. Marching cubes: A high resolution 3d surface34

construction algorithm. SIGGRAPH Comput Graph 1987;21(4):163–35

169.36

[11] Kozlikova, B, Krone, M, Lindow, N, Falk, M, Baaden, M, Baum,37

D, et al. Visualization of biomolecular structures: state of the art. In:38

Eurographics Conference on Visualization (EuroVis)-STARs. The Euro-39

graphics Association; 2015, p. 061–081.40

[12] Miao, H, Klein, T, KouÅil, D, Mindek, P, Schatz, K, Grller, ME,41

et al. Multiscale molecular visualization. Journal of Molecular Biology42

2018;URL: http://www.sciencedirect.com/science/article/43

pii/S0022283618310490. doi:https://doi.org/10.1016/j.jmb.44

2018.09.004.45

[13] Martı́nez, L, Andrade, R, Birgin, EG, Martı́nez, JM. Packmol: a46

package for building initial configurations for molecular dynamics simu-47

lations. Journal of computational chemistry 2009;30(13):2157–2164.48

[14] Johnson, GT, Autin, L, Al-Alusi, M, Goodsell, DS, Sanner, MF, Ol-49

son, AJ. cellpack: a virtual mesoscope to model and visualize structural50

systems biology. Nature methods 2015;12(1):85.51

[15] Koch, TB, Kouřil, D, Klein, T, Mindek, P, Viola, I. Semantic screen-52

space occlusion for multiscale molecular visualization. In: Proceedings53

of the Eurographics Workshop on Visual Computing for Biology and54

Medicine. Eurographics Association; 2018, p. 197–201.55

[16] Kouřil, D, Čmolı́k, L, Kozlikova, B, Wu, HY, Johnson, G, Goodsell,56

DS, et al. Labels on levels: labeling of multi-scale multi-instance and57

crowded 3d biological environments. IEEE transactions on visualization58

and computer graphics 2019;25(1):977–986.59

[17] Muzic, ML, Autin, L, Parulek, J, Viola, I. cellVIEW: a Tool for Il-60

lustrative and Multi-Scale Rendering of Large Biomolecular Datasets. In:61

Bhler, K, Linsen, L, John, NW, editors. Eurographics Workshop on62

Visual Computing for Biology and Medicine. The Eurographics Associa-63

tion. ISBN 978-3-905674-82-8; 2015,doi:10.2312/vcbm.20151209.64

[18] Haefner, JW. Modeling biological systems: principles and applications.65

Springer Science & Business Media; 2012.66

[19] Jacob, C, Burleigh, I. Biomolecular swarmsan agent-based model67

of the lactose operon. Natural Computing: an international journal68

2004;3(4):361–376.69

[20] Jacob, C, Barbasiewicz, A, Tsui, G. Swarms and genes: Exploring 70

λ-switch gene regulation through swarm intelligence. In: Evolutionary 71

Computation, 2006. CEC 2006. IEEE Congress on. IEEE; 2006, p. 2535– 72

2542. 73

[21] Sarpe, V, Jacob, C. Simulating the decentralized processes of the human 74

immune system in a virtual anatomy model. In: BMC bioinformatics; 75

vol. 14. BioMed Central; 2013, p. S2. 76

[22] Karr, JR, Sanghvi, JC, Macklin, DN, Gutschow, MV, Jacobs, JM, 77

Bolival Jr, B, et al. A whole-cell computational model predicts phenotype 78

from genotype. Cell 2012;150(2):389–401. 79

[23] Jacob, C, von Mammen, S, Davison, T, Sarraf-Shirazi, A, Sarpe, V, 80

Esmaeili, A, et al. Lindsay virtual human: Multi-scale, agent-based, 81

and interactive. In: Advances in Intelligent Modelling and Simulation. 82

Springer; 2012, p. 327–349. 83

[24] Wu, A, Davison, T, Jacob, C. A 3d multiscale model of chemotaxis in 84

bacteria. In: Artificial Life Conference 2016. 2016, p. 546. 85

[25] Shirazi, AS, Davison, T, von Mammen, S, Denzinger, J, Jacob, C. 86

Adaptive agent abstractions to speed up spatial agent-based simulations. 87

Simulation Modelling Practice and Theory 2014;40:144–160. 88

[26] Boyd, JE, Hushlak, G, Jacob, CJ. Swarmart: interactive art from swarm 89

intelligence. In: Proceedings of the 12th annual ACM international con- 90

ference on Multimedia. ACM; 2004, p. 628–635. 91

[27] Miner, D, Kasch, N. Swarmvis: a tool for visualizing swarm systems. 92

UMBC Computer Science 2008;636. 93

[28] Wei, LY, Lefebvre, S, Kwatra, V, Turk, G. State of the art in example- 94

based texture synthesis. In: Eurographics 2009, State of the Art Report, 95

EG-STAR. Eurographics Association; 2009, p. 93–117. 96

[29] Schachter, B, Ahuja, N. Random pattern generation processes. Com- 97

puter Graphics and Image Processing 1979;10(2):95–114. 98

[30] Efros, AA, Leung, TK. Texture synthesis by non-parametric sampling. 99

In: Computer Vision, 1999. The Proceedings of the Seventh IEEE Inter- 100

national Conference on; vol. 2. IEEE; 1999, p. 1033–1038. 101

[31] Wei, LY, Levoy, M. Texture synthesis over arbitrary manifold surfaces. 102

In: Proceedings of the 28th annual conference on Computer graphics and 103

interactive techniques. ACM; 2001, p. 355–360. 104

[32] Kwatra, V, Essa, I, Bobick, A, Kwatra, N. Texture optimization for 105

example-based synthesis. In: ACM Transactions on Graphics (TOG); 106

vol. 24. ACM; 2005, p. 795–802. 107

[33] Cohen, MF, Shade, J, Hiller, S, Deussen, O. Wang tiles for image and 108

texture generation; vol. 22. ACM; 2003. 109

[34] Li, C, Wand, M. Precomputed real-time texture synthesis with marko- 110

vian generative adversarial networks. In: European Conference on Com- 111

puter Vision. Springer; 2016, p. 702–716. 112

[35] Vanhoey, K, Sauvage, B, Larue, F, Dischler, JM. On-the-fly multi-scale 113

infinite texturing from example. ACM Transactions on Graphics (TOG) 114

2013;32(6):208. 115

[36] Han, C, Risser, E, Ramamoorthi, R, Grinspun, E. Multiscale texture 116

synthesis. In: ACM Transactions on Graphics (TOG); vol. 27. ACM; 117

2008, p. 51. 118

[37] Glanville, S. Texture bombing. GPU Gems: Programming Techniques, 119

Tips, and Tricks for 2004;. 120

[38] Wang, L, Shi, Y, Chen, Y, Popescu, V. Just-in-time texture synthesis. 121

In: Computer Graphics Forum; vol. 32. Wiley Online Library; 2013, p. 122

126–138. 123

[39] Lefebvre, S, Hornus, S, Neyret, F. Texture sprites: Texture elements 124

splatted on surfaces. In: Proceedings of the 2005 symposium on Interac- 125

tive 3D graphics and games. ACM; 2005, p. 163–170. 126

[40] Hurtut, T, Landes, PE, Thollot, J, Gousseau, Y, Drouillhet, R, Coeur- 127

jolly, JF. Appearance-guided synthesis of element arrangements by ex- 128

ample. In: Proceedings of the 7th International Symposium on Non- 129

Photorealistic Animation and Rendering. ACM; 2009, p. 51–60. 130

[41] Landes, PE, Galerne, B, Hurtut, T. A shape-aware model for discrete 131

texture synthesis. In: Computer Graphics Forum; vol. 32. Wiley Online 132

Library; 2013, p. 67–76. 133

[42] Ma, C, Wei, LY, Tong, X. Discrete element textures. In: ACM Transac- 134

tions on Graphics (TOG); vol. 30. ACM; 2011, p. 62. 135

[43] Ijiri, T, Mech, R, Igarashi, T, Miller, G. An example-based procedural 136

system for element arrangement. In: Computer Graphics Forum; vol. 27. 137

Wiley Online Library; 2008, p. 429–436. 138

[44] Roveri, R, Öztireli, AC, Martin, S, Solenthaler, B, Gross, M. Exam- 139

ple based repetitive structure synthesis. In: Computer Graphics Forum; 140

vol. 34. Wiley Online Library; 2015, p. 39–52. 141

http://biovisions.mcb.harvard.edu
http://www.sciencedirect.com/science/article/pii/S0097849318301778
http://www.sciencedirect.com/science/article/pii/S0097849318301778
http://www.sciencedirect.com/science/article/pii/S0097849318301778
http://dx.doi.org/https://doi.org/10.1016/j.cag.2018.10.016
http://dx.doi.org/https://doi.org/10.1016/j.cag.2018.10.016
http://dx.doi.org/https://doi.org/10.1016/j.cag.2018.10.016
http://www.sciencedirect.com/science/article/pii/S0022283618310490
http://www.sciencedirect.com/science/article/pii/S0022283618310490
http://www.sciencedirect.com/science/article/pii/S0022283618310490
http://dx.doi.org/https://doi.org/10.1016/j.jmb.2018.09.004
http://dx.doi.org/https://doi.org/10.1016/j.jmb.2018.09.004
http://dx.doi.org/https://doi.org/10.1016/j.jmb.2018.09.004
http://dx.doi.org/10.2312/vcbm.20151209

12 Preprint Submitted for review / Computers & Graphics (2019)

[45] Olsen, L, Samavati, FF, Sousa, MC, Jorge, JA. Sketch-based modeling:1

A survey. Computers & Graphics 2009;33(1):85–103.2

[46] Deussen, O, Hanrahan, P, Lintermann, B, Měch, R, Pharr, M,3

Prusinkiewicz, P. Realistic modeling and rendering of plant ecosystems.4

In: Proceedings of the 25th annual conference on Computer graphics and5

interactive techniques. ACM; 1998, p. 275–286.6

[47] Emilien, A, Vimont, U, Cani, MP, Poulin, P, Benes, B. Worldbrush:7

Interactive example-based synthesis of procedural virtual worlds. ACM8

Trans Graph 2015;34(4):106:1–106:11.9

[48] Gain, J, Long, H, Cordonnier, G, Cani, MP. Ecobrush: Interactive con-10

trol of visually consistent large-scale ecosystems. In: Computer Graphics11

Forum; vol. 36. Wiley Online Library; 2017, p. 63–73.12

[49] Ketabchi, K, Runions, A, Samavati, FF. 3d maquetter: Sketch-based 3d13

content modeling for digital earth. In: 2015 International Conference on14

Cyberworlds (CW). 2015, p. 98–106. doi:10.1109/CW.2015.41.15

[50] Samavati, F, Runions, A. Interactive 3d content modeling for digital16

earth. The Visual Computer 2016;32(10):1293–1309.17

[51] Zhu, B, Iwata, M, Haraguchi, R, Ashihara, T, Umetani, N, Igarashi,18

T, et al. Sketch-based dynamic illustration of fluid systems. In: ACM19

Transactions on Graphics (TOG); vol. 30. ACM; 2011, p. 134.20

[52] Gu, Q, Deng, Z. Formation sketching: an approach to stylize groups in21

crowd simulation. In: Proceedings of Graphics Interface 2011. Canadian22

Human-Computer Communications Society; 2011, p. 1–8.23

[53] Google LLC, . Tilt brush software. 2016. URL: https://www.24

tiltbrush.com/.25

[54] Afsharchi, M, Far, BH, Denzinger, J. Ontology-guided learning to26

improve communication between groups of agents. In: Proceedings of the27

fifth international joint conference on Autonomous agents and multiagent28

systems. ACM; 2006, p. 923–930.29

[55] Rene, B. Component based object management. Game Programming30

Gems 2005;5:25–37.31

[56] Epic Games, Inc., . Unreal Engine 4 Game Engine. 2019. URL: https:32

//www.unrealengine.com.33

[57] Unity Technologies, ApS, . Unity 3d game engine. 2019. URL: https:34

//unity.com/.35

[58] Nvidia Corporation, . Flex particle physics library. 2019. URL: https:36

//developer.nvidia.com/flex.37

[59] Macklin, M, Müller, M, Chentanez, N, Kim, TY. Unified particle38

physics for real-time applications. ACM Transactions on Graphics (TOG)39

2014;33(4):104.40

[60] Autodesk, Inc., . Autodesk maya. 2019. URL: https://www.41

autodesk.ca.42

[61] Ju, T, Losasso, F, Schaefer, S, Warren, J. Dual contouring of hermite43

data. In: ACM transactions on graphics (TOG); vol. 21. ACM; 2002, p.44

339–346.45

[62] Blender Foundation, . Blender. 2019. URL: https://www.blender.46

org/.47

[63] Crane, K, Desbrun, M, Schröder, P. Trivial connections on discrete48

surfaces. In: Computer Graphics Forum; vol. 29. Wiley Online Library;49

2010, p. 1525–1533.50

[64] Berman, HM, Westbrook, J, Feng, Z, Gilliland, G, Bhat, TN,51

Weissig, H, et al. The protein data bank. Nucleic Acids Res52

2000;28(1):235–242. URL: http://www.ncbi.nlm.nih.gov/pmc/53

articles/PMC102472/; gkd090[PII].54

[65] Turk, G, Banks, D. Image-guided streamline placement. In: Proceed-55

ings of the 23rd annual conference on Computer graphics and interactive56

techniques. ACM; 1996, p. 453–460.57

[66] Kay, TL, Kajiya, JT. Ray tracing complex scenes. In: ACM SIGGRAPH58

computer graphics; vol. 20. ACM; 1986, p. 269–278.59

[67] Le Muzic, M, Waldner, M, Parulek, J, Viola, I. Illustrative timelapse: A60

technique for illustrative visualization of particle-based simulations. In:61

2015 IEEE Pacific Visualization Symposium (PacificVis). IEEE; 2015, p.62

247–254.63

[68] Davison, T, Denzinger, J. The huddle: Combining ai techniques to64

coordinate a player’s game characters. In: Computational Intelligence65

and Games (CIG), 2012 IEEE Conference on. IEEE; 2012, p. 203–210.66

http://dx.doi.org/10.1109/CW.2015.41
https://www.tiltbrush.com/
https://www.tiltbrush.com/
https://www.tiltbrush.com/
https://www.unrealengine.com
https://www.unrealengine.com
https://www.unrealengine.com
https://unity.com/
https://unity.com/
https://unity.com/
https://developer.nvidia.com/flex
https://developer.nvidia.com/flex
https://developer.nvidia.com/flex
https://www.autodesk.ca
https://www.autodesk.ca
https://www.autodesk.ca
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC102472/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC102472/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC102472/

	Introduction
	Related work
	Molecular Dynamics Construction and Visualization
	Agent-based modeling and visualization
	Example-based texture synthesis, procedural modelling, and sketch-based synthesis

	Large-scale agent-based simulation in Unreal Engine 4
	Mitochondrial molecular-agents

	Synthesizing molecular-agents
	Discrete element texture synthesis
	Synthesizing agents

	Sketch-based simulation design in virtual reality
	Assembling agents and desinging examples in the palette
	An example LifeBrush session

	Implicit surface modeling in VR
	Iteractive visualization with simulation timelines
	Agent pathlines
	Interaction event traces

	Discussion and future work

